$\mathbf{1}^{\text {st }}$ Grade Mathematics • Unpacked Content

For the new Common Core State Standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers.

What is the purpose of this document?

To increase student achievement by ensuring educators understand specifically what the new standards mean a student must know, understand and be able to do.

What is in the document?

Descriptions of what each standard means a student will know, understand and be able to do. The "unpacking" of the standards done in this document is an effort to answer a simple question "What does this standard mean that a student must know and be able to do?" and to ensure the description is helpful, specific and comprehensive for educators.

How do I send Feedback?

We intend the explanations and examples in this document to be helpful and specific. That said, we believe that as this document is used, teachers and educators will find ways in which the unpacking can be improved and made ever more useful. Please send feedback to us at feedback@dpi.state.nc.us and we will use your input to refine our unpacking of the standards. Thank You!

Just want the standards alone?

You can find the standards alone at http://corestandards.org/the-standards
Mathematical Vocabulary is identified in bold print. These are words that students should know and be able to use in context.

Common Core Cluster

Represent and solve problems involving addition and subtraction.

Students develop strategies for adding and subtracting whole numbers based on their prior work with small numbers. They use a variety of models, including discrete objects and length-based models (e.g., cubes connected to form lengths), to model add-to, take-from, put-together, take-apart, and compare situations to develop meaning for the operations of addition and subtraction, and to develop strategies to solve arithmetic problems with these operations.
Prior to first grade students should recognize that any given group of objects (up to 10) can be separated into sub groups in multiple ways and remain equivalent in amount to the original group (Ex: A set of 6 cubes can be separated into a set of 2 cubes and a set of 4 cubes and remain 6 total cubes).
Common Core Standard
1.OA. 1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. ${ }^{1}$
${ }^{1}$ See Glossary, Table 1

Unpacking

What do these standards mean a child will know and be able to do?
1.OA. 1 builds on the work in Kindergarten by having students use a variety of mathematical representations (e.g., objects, drawings, and equations) during their work. The unknown symbols should include boxes or pictures, and not letters.

Teachers should be cognizant of the three types of problems (Glossary, Table 1). There are three types of addition and subtraction problems: Result Unknown, Change Unknown, and Start Unknown. Here are some Addition

Use informal language (and, minus/subtract, the same as) to describe joining situations (putting together) and separating situations (breaking apart).

Use the addition symbol (+) to represent joining situations, the subtraction symbol (-) to represent separating situations, and the equal sign (=) to represent a relationship regarding quantity between one side of the equation and the other.

A helpful strategy is for students to recognize sets of objects in common patterned arrangements (0-6) to tell how many without counting (subitizing).

Student 3

Number line
I counted on the number line. First I counted 4, and then I counted 5 more and landed on 9 . Then I counted 6 more and landed on 15 . So there were 15 total cookies.

Common Core Cluster

Understand and apply properties of operations and the relationship between addition and subtraction.

Students understand connections between counting and addition and subtraction (e.g., adding two is the same as counting on two). They use properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these properties (e.g., "making tens") to solve addition and subtraction problems within 20. By comparing a variety of solution strategies, children build their understanding of the relationship between addition and subtraction.

Common Core Standard

1.OA.3 Apply properties of operations as strategies to add and subtract. ${ }^{2}$
Examples: If $8+3=11$ is known, then $3+8=11$ is also known.
(Commutative property of addition.)
To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$.
(Associative property of addition.)
${ }^{2}$ Students need not use formal terms for these properties.

Unpacking

What do these standards mean a child will know and be able to do?
1.OA. 3 calls for students to apply properties of operations as strategies to add and subtract. Students do not need to use formal terms for these properties. Students should use mathematical tools, such as cubes and counters, and representations such as the number line and a 100 chart to model these ideas.

Example:
Student can build a tower of 8 green cubes and 3 yellow cubes and another tower of 3 yellow and 8 green cubes to show that order does not change the result in the operation of addition. Students can also use cubes of 3 different colors to "prove" that $(2+6)+4$ is equivalent to $2+(6+4)$ and then to prove $2+6+4=2+10$.

Common Core Cluster
 Add and subtract within 20.

Common Core Standard

1.OA.5 Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

Unpacking

What do these standards mean a child will know and be able to do?
1.OA.5 asks for students to make a connection between counting and adding and subtraction. Students use various counting strategies, including counting all, counting on, and counting back with numbers up to 20. This standard calls for students to move beyond counting all and become comfortable at counting on and counting back. The counting all strategy requires students to count an entire set. The counting and counting back strategies occur when students are able to hold the "start number" in their head and count on from that number.

Example: $5+2=$ \qquad
Student 1
Counting All
$5+2=-$ The student counts
five counters. The student adds
two more. The student counts 1 ,
$2,3,4,5,6,7$ to get the answer.

Student 2

Counting On
$5+2=$ \qquad Student counts five counters.
The student adds the first counter and says
6 , then adds another counter and says 7 . The
student knows the answer is 7 , since they counted on 2 .

Example: $12-3=$

$$
\begin{aligned}
& \text { Student } 1 \\
& \text { Counting All } \\
& 12-3=_ \text {. The student counts } \\
& \text { twelve counters. The student } \\
& \text { removes } 3 \text { of them. The student } \\
& \text { counts } 1,2,3,4,5,6,7,8,9 \text { to } \\
& \text { get the answer. }
\end{aligned}
$$

Student 2
 Counting Back
 12-3= . The student counts twelve counters. The student removes a counter and says 11 , removes another counter and says 10 , and removes a third counter and says 9 . The student knows the answer is 9 , since they counted back 3

1.OA.6 Add and subtract within 20 , demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10+4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+$ $4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+$ $1=12+1=13$).
1.OA. 6 mentions the word fluency when students are adding and subtracting numbers within 10 . Fluency means accuracy (correct answer), efficiency (within 4-5 seconds), and flexibility (using strategies such as making 5 or making 10).

The standard also calls for students to use a variety of strategies when adding and subtracting numbers within 20 Students should have ample experiences modeling these operations before working on fluency. Teacher could differentiate using smaller numbers.

It is importance to move beyond the strategy of counting on, which is considered a less important skill than the ones here in 1.OA.6. Many times teachers think that counting on is all a child needs, when it is really not much better skill than counting all and can becomes a hindrance when working with larger numbers.

Example: $8+7=$

$$
\begin{aligned}
& \text { Student } 1 \\
& \text { Making } 10 \text { and Decomposing a } \\
& \text { Number } \\
& \text { I know that } 8 \text { plus } 2 \text { is } 10 \text {, so I } \\
& \text { decomposed (broke) the } 7 \text { up into a } 2 \\
& \text { and a } 5 \text {. First I added } 8 \text { and } 2 \text { to get } \\
& 10 \text {, and then added the } 5 \text { to get } 15 \text {. } \\
& 8+7=(8+2)+5=10+5=15
\end{aligned}
$$

Student 2

Creating an Easier Problem with
Known Sums
I know 8 is $7+1$.
I also know that 7 and 7 equal 14 and then I added 1 more to get 15 .

$$
8+7=(7+7)+1=15
$$

Student 2
 Relationship between Addition and Subtraction
 6 plus \square is 14 , I know that 6 plus
 8 is 14 , so that means that 14
 minus 6 is 8 .
 $$
6+8=14 \text { so } 14-6+8
$$

Algebraic ideas underlie what students are doing when they create equivalent expressions in order to solve a problem or when they use addition combinations they know to solve more difficult problems. Students begin to consider the relationship between the parts. For example, students notice that the whole remains the same, as one part increases the other part decreases. $5+2=4+3$

Common Core Standard and Cluster

Work with addition and subtraction equations.

Common Core Standard

1.OA. 7 Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=6,7=8-1,5+2$ $=2+5,4+1=5+2$.

Unpacking
 What do these standards mean a child will know and be able to do?

1.OA. 7 calls for students to work with the concept of equality by identifying whether equations are true or false. Therefore, students need to understand that the equal sign does not mean "answer comes next", but rather that the equal sign signifies a relationship between the left and right side of the equation.
The number sentence $4+5=9$ can be read as, "Four plus five is the same amount as nine."
In addition, Students should be exposed to various representations of equations, such as:

- an operation on the left side of the equal sign and the answer on the right side $(5+8=13)$
- an operation on the right side of the equal sign and the answer on the left side $(13=5+8)$
- numbers on both sides of the equal $\operatorname{sign}(6=6)$
- operations on both sides of the equal $\operatorname{sign}(5+2=4+3)$.

Students need many opportunities to model equations using cubes, counters, drawings, etc.
1.OA.8 extends the work that students do in 1.OA. 4 by relating addition and subtraction as related operations for situations with an unknown. This standard builds upon the "think addition" for subtraction problems as explained by Student 2 in 1.OA. 6 .

```
Student }
```

$5=$ \qquad - 3

I know that 5 plus 3 is 8 .
So, 8 minus 3 is 5 .

Common Core Cluster

Extend the counting sequence.

Common Core Standard

1.NBT. 1 Count to 120 , starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

Unpacking
 What do these standards mean a child will know and be able to do?

1.NBT. 1 calls for students to rote count forward to 120 by Counting On from any number less than 120. Students should have ample experiences with the hundreds chart to see patterns between numbers, such as all of the numbers in a column on the hundreds chart have the same digit in the ones place, and all of the numbers in a row have the same digit in the tens place.

This standard also calls for students to read, write and represent a number of objects with a written numeral (number form or standard form). These representations can include cubes, place value (base 10) blocks, pictorial representations or other concrete materials. As students are developing accurate counting strategies they are also building an understanding of how the numbers in the counting sequence are related-each number is one more (or one less) than the number before (or after).

Common Core Cluster

Understand place value.

Students develop, discuss, and use efficient, accurate, and generalizable methods to add within 100 and subtract multiples of 10 . They compare whole numbers (at least to 100) to develop understanding of and solve problems involving their relative sizes. They think of whole numbers between 10 and 100 in terms of tens and ones (especially recognizing the numbers 11 to 19 as composed of a ten and some ones). Through activities that build number sense, they understand the order of the counting numbers and their relative magnitudes.

Common Core Standard

1.NBT. 2 Understand that the two

 digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:a. 10 can be thought of as a bundle of ten ones - called a "ten."

Unpacking

What does this standards mean a child will know and be able to do?
1.NBT.2a asks students to unitize a group of ten ones as a whole unit: a ten. This is the foundation of the place value system. So, rather than seeing a group of ten cubes as ten individual cubes, the student is now asked to see those ten cubes as a bundle- one bundle of ten.

b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.
1.NBT.2b asks students to extend their work from Kindergarten when they composed and decomposed numbers from 11 to 19 into ten ones and some further ones. In Kindergarten, everything was thought of as individual units: "ones". In First Grade, students are asked to unitize those ten individual ones as a whole unit: "one ten".
Students in first grade explore the idea that the teen numbers (11 to 19) can be expressed as one ten and some leftover ones. Ample experiences with ten frames will help develop this concept.
Example:
For the number 12, do you have enough to make a ten? Would you have any leftover? If so, how many leftovers would you have?

Student 1
I filled a ten frame to make one ten and had two counters left over. I had enough to make a ten with some leftover. The number 12 has 1 ten and 2 ones.

Student 2

I counted out 12 place value cubes. I had enough to trade 10 cubes for a tenrod (stick). I now have 1 ten-rod and 2 cubes left over. So the number 12 has 1 ten and 2 ones.

c. The numbers $10,20,30,40,50$, $60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
1.NBT.2c builds on the work of 1.NBT.2b. Students should explore the idea that decade numbers (e.g. 10, 20, 30, 40) are groups of tens with no left over ones. Students can represent this with cubes or place value (base 10) rods. (Most first grade students view the ten stick (numeration rod) as ONE. It is recommended to make a ten with unfix cubes or other materials that students can group. Provide students with opportunities to count books, cubes, pennies, etc. Counting 30 or more objects supports grouping to keep track of the number of objects.)

1.NBT. 3 builds on the work of 1.NBT. 1 and 1.NBT. 2 by having students compare two numbers by examining the amount of tens and ones in each number. Students are introduced to the symbols greater than (>), less than (<) and equal to (=). Students should have ample experiences communicating their comparisons using words, models and in context before using only symbols in this standard.

Example: 42 45

Student 1
42 has 4 tens and 2 ones. 45 has 4 tens and 5 ones. They have the same number of tens, but 45 has more ones than 42 . So 45 is greater than 42. So, $42<45$.

Student 2

42 is less than 45 . I know this because when I count up I say 42 before I say 45. So, $42<45$.

Common Core Cluster

Use place value understanding and properties of operations to add and subtract.

Common Core Standard

1.NBT.4Add within 100 , including adding a two-digit number and a onedigit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

Unpacking

What do these standards mean a child will know and be able to do?
1.NBT. 4 calls for students to use concrete models, drawings and place value strategies to add and subtract within 100. Students should not be exposed to the standard algorithm of carrying or borrowing in first grade

Student 1

I used a hundreds chart. I started at 37 and moved over 3 to land on 40 . Then to add 20 I moved down 2 rows and landed on 60 . So, there are 60 people on the playground.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	$\downarrow 60$
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Example:
There are 37 people on the playground. 20 more people show up. How many people are now on the playground?

1.NBT. 5 Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.
1.NBT. 5 builds on students' work with tens and ones by mentally adding ten more and ten less than any number less than 100. Ample experiences with ten frames and the hundreds chart help students use the patterns found in the tens place to solve such problems.
Example:
There are 74 birds in the park. 10 birds fly away. How many are left?
Student 1
I used a 100s board. I started at 74 . Then, because 10 birds
flew away, I moved back one row. I landed on 64 . So, there are 64 birds left in the park.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Common Core Cluster

Measure lengths indirectly and by iterating length units.

Students develop an understanding of the meaning and processes of measurement, including underlying concepts such as iterating (the mental activity of building up the length of an object with equal-sized units) and the transitivity principle for indirect measurement. ${ }^{1}$
${ }^{1}$ Students should apply the principle of transitivity of measurement to make indirect comparisons, but they need not use this technical term.

Common Core Standard

1.MD. 1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.

Unpacking

 What do these standards mean a child will know and be able to do?1.MD. 1 calls for students to indirectly measure objects by comparing the length of two objects by using a third object as a measuring tool. This concept is referred to as transitivity.
Example:
Which is longer: the height of the bookshelf or the height of a desk?

Student 1
I used a pencil to measure the height of the bookshelf and it was 6 pencils long. I used the same pencil to measure the height of the desk and the desk was 4 pencils long. Therefore, the bookshelf is taller than the desk.

Student 2
I used a book to measure the bookshelf and it was 3 books long. I used the same book to measure the height of the desk and it was a little less than 2 books long. Therefore, the bookshelf is taller than the desk.
1.MD. 2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.
1.MD. 2 asks students to use multiple copies of one object to measure a larger object. This concept is referred to as iteration. Through numerous experiences and careful questioning by the teacher, students will recognize the importance of making sure that there are not any gaps or overlaps in order to get an accurate measurement. This concept is a foundational building block for the concept of area in $3^{\text {rd }}$ Grade.

Example:
How long is the paper in terms of paper clips?

Common Core Cluster

Represent and interpret data.

Common Core Standard

1.MD. 4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

Unpacking

What do these standards mean a child will know and be able to do?

1.MD. 4 calls for students to work with categorical data by organizing, representing and interpreting data Students should have experiences posing a question with 3 possible responses and then work with the data that they collect.

Example below:
Students pose a question and the 3 possible responses.
Which is your favorite flavor of ice cream? Chocolate, vanilla or strawberry? Students collect their data by using tallies or another way of keeping track. Students organize their data by totaling each category in a chart or table. Picture and bar graphs are introduced in Second Grade.

What is your favorite flavor of ice cream?	
Chocolate	12
Vanilla	5
Strawberry	6

Students interpret the data by comparing categories.
Examples of comparisons:
What does the data tell us? Does it answer our question?

- More people like chocolate than the other two flavors.
- Only 5 people liked vanilla.
- Six people liked Strawberry.
- 7 more people liked Chocolate than Vanilla.
- The number of people that liked Vanilla was 1 less than the number of people who liked Strawberry.
- The number of people who liked either Vanilla or Strawberry was 1 less than the number of people who liked chocolate.
- 23 people answered this question.

Common Core Cluster

Reason with shapes and their attributes.

Students compose and decompose plane or solid figures (e.g., put two triangles together to make a quadrilateral) and build understanding of part-whole relationships as well as the properties of the original and composite shapes. As they combine shapes, they recognize them from different perspectives and orientations, describe their geometric attributes, and determine how they are alike and different, to develop the background for measurement and for initial understandings of properties such as congruence and symmetry.

Common Core Standards \quad Unpacking

What do these standards mean a child will know and be able to do?
1.G. 1 calls for students to determine which attributes of shapes are defining compared to those that are nondefining. Defining attributes are attributes that must always be present. Non-defining attributes are attributes that do not always have to be present. The shapes can include triangles, squares, rectangles, and trapezoids.

Asks students to determine which attributes of shapes are defining compared to those that are non-defining. Defining attributes are attributes that help to define a particular shape (\#angles, \# sides, length of sides, etc.). Non-defining attributes are attributes that do not define a particular shape (color, position, location, etc.). The shapes can include triangles, squares, rectangles, and trapezoids. 1.G.2 includes half-circles and quarter-circles.

Example:

All triangles must be closed figures and have 3 sides. These are defining attributes. Triangles can be different colors, sizes and be turned in different directions, so these are non-defining.

| 1.G.2 Compose two-dimensional
 shapes (rectangles, squares,
 trapezoids, triangles, half-circles, and
 quarter-circles) or three-dimensional
 shapes (cubes, right rectangular
 prisms, right circular cones, and right
 circular cylinders) to create a
 composite shape, and compose new
 shapes from the composite shape."
 1
 Students do not need to learn formal
 names such as "right rectangular
 prism."1.G.2 calls for students to compose (build) a two-dimensional or three-dimensional shape from two shapes. This
 standard includes shape puzzles in which students use objects (e.g., pattern blocks) to fill a larger region. Students
 do not need to use the formal names such as "right rectangular prism." |
| :--- | :--- | :--- |
| Example: |

1.G.3 Partition circles and rectangles into two and four equal shares,
describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.
1.G. 3 is the first time students begin partitioning regions into equal shares using a context such as cookies, pies, pizza, etc... This is a foundational building block of fractions, which will be extended in future grades. Students should have ample experiences using the words, halves, fourths, and quarters, and the phrases half of, fourth of, and quarter of. Students should also work with the idea of the whole, which is composed of two halves, or four fourths or four quarters.

Example:
How can you and a friend share equally (partition) this piece of paper so that you both have the same amount of paper to paint a picture?

Student 2

I would split it from corner to corner (diagonally). She gets half of the paper and I get half of the paper. See, if we cut here (along the line), the parts are the same size.

| Example: | Teacher: There is pizza for dinner.
 What do you notice bout the slices on
 the pizza? |
| :--- | :--- | :--- | :--- |

